Acoustic Target Tracking Using Tiny Wireless Sensor Devices
نویسندگان
چکیده
With the advancement of MEMS technologies, wireless networks consist of tiny sensor devices hold the promise of revolutionizing sensing in a wide range of application domains because of their flexibility, low cost and ease of deployment. However, the constrained computation power, battery power, storage capacity and communication bandwidth of the tiny devices pose challenging problems in the design and deployment of such systems. Target localization using acoustic signal with tiny wireless devices is a particularly difficult task due to the amount of signal processing and computation involved. In this paper, we provide an in-depth study of designing such wireless sensor networks for real-world acoustic tracking applications. We layout a cluster-based architecture to address the limitations of the tiny sensing devices. To achieve effective utilization of the scarce wireless bandwidth, a quality-driven paradigm to suppress redundant information and resolve contention is proposed. One instance of the quality-driven approach is implemented in the acoustic tracking system, where the quality of the tracking reports can be quantified numerically. We demonstrate the effectiveness of our proposed architecture and protocols using a sensor network testbed based on UCBerkeley mica motes. Considering the performance limitations of tiny sensor devices, the achieved acoustic target tracking accuracy is extraordinarily good. Our experimental study also shows that the acoustic target tracking quality can be indeed measured and used to assist resource allocation decisions. This application-driven design and implementation exercises also serve to identify important areas of further work in in-network processing and communications.
منابع مشابه
Target Tracking Based on Virtual Grid in Wireless Sensor Networks
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...
متن کاملTarget Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks
Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...
متن کاملMultiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization
A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...
متن کاملMathematical Analysis of Optimal Tracking Interval Management for Power Efficient Target Tracking Wireless Sensor Networks
In this paper, we study the problem of power efficient tracking interval management for distributed target tracking wireless sensor networks (WSNs). We first analyze the performance of a distributed target tracking network with one moving object, using a quantitative mathematical analysis. We show that previously proposed algorithms are efficient only for constant average velocity objects howev...
متن کاملRouting Hole Handling Techniques for Wireless Sensor Networks: A Review
A Wireless Sensor Network consists of several tiny devices which have the capability to sense and compute the environmental phenomenon. These sensor nodes are deployed in remote areas without any physical protections. A Wireless Sensor Network can have various types of anomalies due to some random deployment of nodes, obstruction and physical destructions. These anomalies can diminish the sensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003